Highest vectors of representations (total 4) ; the vectors are over the primal subalgebra. | \(-h_{2}+h_{1}\) | \(g_{2}\) | \(g_{1}\) | \(g_{3}\) |
weight | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(2\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(\omega_{1}-6\psi\) | \(\omega_{1}+6\psi\) | \(2\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0) | \(\displaystyle V_{\omega_{1}-6\psi} \) → (1, -6) | \(\displaystyle V_{\omega_{1}+6\psi} \) → (1, 6) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0) | ||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | ||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
| Semisimple subalgebra component.
| ||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | ||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(\omega_{1}-6\psi\) \(-\omega_{1}-6\psi\) | \(\omega_{1}+6\psi\) \(-\omega_{1}+6\psi\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | ||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{1}-6\psi}\oplus M_{-\omega_{1}-6\psi}\) | \(\displaystyle M_{\omega_{1}+6\psi}\oplus M_{-\omega_{1}+6\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | ||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{1}-6\psi}\oplus M_{-\omega_{1}-6\psi}\) | \(\displaystyle M_{\omega_{1}+6\psi}\oplus M_{-\omega_{1}+6\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) |